High-frequency performance of submicrometer transistors that use aligned arrays of single-walled carbon nanotubes.
نویسندگان
چکیده
The unique electronic properties of single-walled carbon nanotubes (SWNTs) make them promising candidates for next generation electronics, particularly in systems that demand high frequency (e.g., radio frequency, RF) operation. Transistors that incorporate perfectly aligned, parallel arrays of SWNTs avoid the practical limitations of devices that use individual tubes, and they also enable comprehensive experimental and theoretical evaluation of the intrinsic properties. Thus, devices consisting of arrays represent a practical route to use of SWNTs for RF devices and circuits. The results presented here reveal many aspects of device operation in such array layouts, including full compatibility with conventional small signal models of RF response. Submicrometer channel length devices show unity current gain (f(t)) and unity power gain frequencies (f(max)) as high as approximately 5 and approximately 9 GHz, respectively, with measured scattering parameters (S-parameters) that agree quantitatively with calculation. The small signal models of the devices provide the essential intrinsic parameters: saturation velocities of 1.2 x 10(7) cm/s and intrinsic values of f(t) of approximately 30 GHz for a gate length of 700 nm, increasing with decreasing length. The results provide clear insights into the challenges and opportunities of SWNT arrays for applications in RF electronics.
منابع مشابه
Guided growth of large-scale, horizontally aligned arrays of single-walled carbon nanotubes and their use in thin-film transistors.
A convenient process for generating large-scale, horizontally aligned arrays of pristine, single-walled carbon nanotubes (SWNTs) is described. The approach uses guided growth, by chemical vapor deposition (CVD), of SWNTs on miscut single-crystal quartz substrates. Studies of the growth reveal important relationships between the density and alignment of the tubes, the CVD conditions, and the mor...
متن کاملHigh frequency performance of individual and arrays of single-walled carbon nanotubes.
We have studied the high frequency performance limits of single-walled carbon nanotube (SWNT) transistors in the diffusive transport regime limited by the acoustic phonon scattering. The relativistic band structure of single-walled carbon nanotubes combined with the acoustic phonon scattering provides an analytical model for the charge transport of the radio frequency transistors. We were able...
متن کاملDirect current injection and thermocapillary flow for purification of aligned arrays of single-walled carbon nanotubes
Articles you may be interested in Effect of synthesis and acid purification methods on the microwave dielectric properties of single-walled carbon nanotube aqueous dispersions Appl. Directed assembly of solution processed single-walled carbon nanotubes via dielectrophoresis: From aligned array to individual nanotube devices Current on/off ratio enhancement through the electrical burning process...
متن کاملScaling properties in transistors that use aligned arrays of single-walled carbon nanotubes.
Recent studies and device demonstrations indicate that horizontally aligned arrays of linearly configured single-walled carbon nanotubes (SWNTs) can serve as an effective thin film semiconductor material, suitable for scalable use in high-performance transistors. This paper presents the results of systematic investigations of the dependence of device properties on channel length, to reveal the ...
متن کاملHigh-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes.
Single-walled carbon nanotubes (SWNTs) have many exceptional electronic properties. Realizing the full potential of SWNTs in realistic electronic systems requires a scalable approach to device and circuit integration. We report the use of dense, perfectly aligned arrays of long, perfectly linear SWNTs as an effective thin-film semiconductor suitable for integration into transistors and other cl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nano letters
دوره 9 5 شماره
صفحات -
تاریخ انتشار 2009